11. Container With Most Water
Problem
You are given an integer array height of length n. There are n vertical lines drawn such that the two endpoints of the ith line are (i, 0) and (i, height[i]).
Find two lines that together with the x-axis form a container, such that the container contains the most water.
Return the maximum amount of water a container can store.
Notice that you may not slant the container.
Example 1: Input: height = [1,8,6,2,5,4,8,3,7] Output: 49 Explanation: The above vertical lines are represented by array [1,8,6,2,5,4,8,3,7]. In this case, the max area of water (blue section) the container can contain is 49.
Example 2: Input: height = [1,1] Output: 1
Constraints: n == height.length 2 <= n <= 105 0 <= height[i] <= 104
Approach
- Tham lam
maxArea = (r-l) * min(height[l], height[r])
- Trường hợp
height[l] <= height[r]
: cho con trỏK = l+1
, tăngk++
cho đến khi tìm vị trí đầu tiên mà
height[k] > height[l]
. Tại sao cần tìmk
(height[k] > height[l]
), mà bỏ qua các sối
trong đoạn(l, k)
(height[i] <= height[l]
)?
Bời vì với các sối
trong đoạn(l, k)
ta cóarea1 = (r-i) * min(height[i], height[r])
Vàarea
trong đoạn[l, k]
làarea2 = (r-l) * min(height[l], height[r])
và vì(r-i) <= (r-l) (i > l)
vàheight[i] <= height[l]
cho nênarea1
trong đoạn(i, k)
sẽ nhỏ hơnarea2
trong đoạn[l, k]
; - Tương tự trường hợp
height[l] > height[r]
:
Implementation
class Solution {
public int maxArea(int[] height) {
int l = 0; int r = height.length - 1;
int maxWater = 0;
while (l < r) {
maxWater = Math.max(maxWater, (r-l) * Math.min(height[l], height[r]));
if (height[l] <= height[r]) {
int k = l+1; // index dau tien height[k] > height[l]
while (k < r && height[k] <= height[l]) {
k++;
}
l = k;
} else {
int k = r-1; // index dau tien height[k] > height[r]
while (l < k && height[k] <= height[r]) {
k--;
}
r = k;
}
}
return maxWater;
}
}