923. 3Sum With Multiplicity
Problem
Given an integer array arr, and an integer target, return the number of tuples i, j, k such that i < j < k and arr[i] + arr[j] + arr[k] == target.
As the answer can be very large, return it modulo 109 + 7.
Example 1:
Input: arr = [1,1,2,2,3,3,4,4,5,5], target = 8
Output: 20
Explanation:
Enumerating by the values (arr[i], arr[j], arr[k]):
(1, 2, 5) occurs 8 times;
(1, 3, 4) occurs 8 times;
(2, 2, 4) occurs 2 times;
(2, 3, 3) occurs 2 times.
Example 2:
Input: arr = [1,1,2,2,2,2], target = 5
Output: 12
Explanation:
arr[i] = 1, arr[j] = arr[k] = 2 occurs 12 times:
We choose one 1 from [1,1] in 2 ways,
and two 2s from [2,2,2,2] in 6 ways.
Example 3:
Input: arr = [2,1,3], target = 6
Output: 1
Explanation: (1, 2, 3) occured one time in the array so we return 1.
Constraints:
3 <= arr.length <= 3000
0 <= arr[i] <= 100
0 <= target <= 300
Intuition
// TODO
Approach
// TODO
Implementation
class Solution {
private static final int MOD = 1_000_000_007;
public int threeSumMulti(int[] arr, int target) {
int n = arr.length;
Arrays.sort(arr);
int count = 0;
for (int i = 0; i < n; i++) {
int remain = target - arr[i];
if (remain < 0) continue;
int l = i+1; int r = n-1;
while (l < r) {
int s = arr[l] + arr[r];
if (s == remain) {
int countDupL = 1;
while (l < r && arr[l] == arr[l+1]) {
l++;
countDupL++;
}
int countDupR = 1;
while (l < r && arr[r] == arr[r-1]) {
r--;
countDupR++;
}
if (l == r) {
count = (count + toHop2(countDupL)) % MOD;
} else {
count = (count + countDupL * countDupR) % MOD;
l++;
r--;
}
} else if (s > remain) {
r--;
} else {
l++;
}
}
}
return count;
}
// nC2
private int toHop2(int n) {
return n * (n-1) / 2;
}
}